

MATEMÁTICA - 7º ANO FICHA DE TRABALHO nº 1 - Resolução

Tema: Os números racionais

1. A
$$A \rightarrow -\frac{2}{3}$$
 $B \rightarrow +\frac{1}{5}$ $C \rightarrow +\frac{4}{5}$ $D \rightarrow +2$ $E \rightarrow \frac{5}{2}$

2. 2.1
$$450 = 2 \times 3^2 \times 5^2$$

2.2
$$294 = 2 \times 3 \times 7^2$$

2. 2.1
$$450 = 2 \times 3^2 \times 5^2$$
 2.2 $294 = 2 \times 3 \times 7^2$ **3. 3.1** $2, 4e6$ **3.2** $0, 2, 4e6$ **3.3** $-0,23;$ $0;$ $\frac{7}{8};$ e

Por exemplo 4. **3.5**
$$1.3(2)$$
 3.6 O número 6.

3.7 0;
$$\frac{7}{8}$$
; 1,3(2); 2; 4; 6

4. Apresento a resolução que me parece mais fácil para a maioria dos alunos mas já sabes que não é a única resolução possível.

4.1
$$(-8)\times(-2)\div(+4)-(-3)\times(-1)\times(+7)=(+16)\div(+4)-(+3)\times(+7)=$$

= $(+4)-(+21)=4-21=-17$

4.2
$$3 \times (4-5) + 5 - 7 \times (-1+3-11) = 3 \times (-1) + 5 - 7 \times (-9) = -3 + 5 + 63 = 65$$

4.3
$$(-3)+(-4)-(-5)=-3-4+5=-2$$

4.4
$$-2+(-3+1)+7-1+(4-2)=-2+(-2)+6+2=-2-2+8=4$$

4.5
$$\frac{3}{5} \times \left(-\frac{1}{2}\right) = -\frac{3}{10}$$

4.6
$$\frac{1}{2} \div \frac{4}{3} \times 2 = \frac{1}{2} \times \frac{3}{4} \times \frac{2}{1} = \frac{6}{8} = \frac{3}{4}$$

4.7
$$0.2 \times \left(-\frac{1}{4}\right) \times \left(-1\right) \times 0.5 = \frac{2}{10} \times \left(-\frac{1}{4}\right) \times \left(-\frac{5}{10}\right) = \left(-\frac{2}{40}\right) \times \left(-\frac{5}{10}\right) = +\frac{10}{400} = +\frac{1}{40}$$

4.8
$$\frac{1}{5} - \frac{2}{3} + 0.3 = \frac{1}{5} = \frac{2}{3} = \frac{2}{3} = \frac{20}{30} = \frac{20}{30} = \frac{20}{30} = \frac{-5}{30} = \frac{1}{6} = \frac{1}$$

4.9
$$\left(-\frac{7}{4} - \frac{1}{2_{(\times 2)}}\right) \times \frac{4}{9} - \left(-1\right) = \left(-\frac{7}{4} - \frac{2}{4}\right) \times \frac{4}{9} + 1 = \left(-\frac{9}{4}\right) \times \frac{4}{9} + 1 = -\frac{36}{36} + 1 = -1 + 1 = 0$$

4.10
$$2^2 \times \frac{1}{2} - \left(-1 + \frac{1}{5}\right) - 1^{100} = 4 \times \frac{1}{2} - \left(-\frac{1}{1_{(x5)}} + \frac{1}{5}\right) - 1 = \frac{4}{1} \times \frac{1}{2} - \left(-\frac{5}{5} + \frac{1}{5}\right) - 1 = \frac{4}{2} - \left(-\frac{4}{5}\right) - 1 = \frac{4}{2_{(x5)}} + \frac{4}{5_{(x2)}} - \frac{1}{1_{(x10)}} = \frac{20}{10} + \frac{8}{10} - \frac{10}{10} = \frac{18}{10} = \frac{9}{5}$$

4.11
$$0.1 \times (-2) \times (-3) \times 0.5 = -0.2 \times (-1.5) = +0.3$$

4.12
$$2 \times \left(\frac{1}{2_{(\times 3)}} + \frac{1}{3_{(\times 2)}} \right) = 2 \times \left(\frac{3}{6} + \frac{2}{6} \right) = 2 \times \frac{5}{6} = \frac{2}{1} \times \frac{5}{6} = \frac{10}{6} = \frac{5}{3}$$

4.13
$$\frac{1}{2} \div \frac{5}{2} \times \frac{1}{3} = \frac{1}{2} \times \frac{2}{5} \times \frac{1}{3} = \frac{2}{30} = \frac{1}{15}$$

4.14
$$\frac{5}{2} \times \left(-\frac{4}{5}\right) \times \frac{1}{3} \div \left(-\frac{1}{2}\right) = -\frac{4}{2} \times \frac{1}{3} \times \left(-\frac{2}{1}\right) = -\frac{4}{6} \times \left(-\frac{2}{1}\right) = +\frac{8}{6} = \frac{4}{3}$$

4.15
$$\left(\frac{1}{2_{(x3)}} + \frac{1}{3_{(x2)}} \right) \div \frac{1}{4} = \left(\frac{3}{6} + \frac{2}{6} \right) \div \frac{1}{4} = \frac{5}{6} \times \frac{4}{1} = \frac{20}{6} = \frac{10}{3}$$

4.16
$$0.2 + \left[\frac{1}{5} - \left(\frac{1}{2} \times \frac{2}{1}\right)\right] = \frac{2}{10} + \left(\frac{1}{5_{(\times 2)}} - \frac{2}{2_{(\times 5)}}\right) = \frac{2}{10} + \left(\frac{2}{10} - \frac{10}{10}\right) = \frac{2}{10} + \left(-\frac{8}{10}\right) = \frac{2}{10} - \frac{8}{10} = -\frac{6}{10} = -\frac{3}{5}$$

- 5.1 Afirmação falsa. O número 33 é divisível por 1, por 3, por 11 e por 33 e para ser número primo devia ter dois e só dois divisores.
- 5.2 Afirmação falsa. Um número primo tem sempre dois e só dois divisores, ele próprio e o número
- 5.3 Afirmação falsa. O número 1 só é múltiplo de si próprio.
- **5.4** Afirmação falsa. $-\frac{21}{7} = -3$ logo é número racional inteiro.
- 5.5 Afirmação falsa. O elemento neutro da multiplicação é o um.
- 5.6 Afirmação falsa. O número dois é um número primo e é par.
- 5.7 Afirmação falsa. A soma dos algarismos do número 233 não é um múltiplo de 3 logo o número 233 não é divisível por 3.
- 5.8 Afirmação verdadeira.
- **5.9** Afirmação falsa. O simétrico de -3 é +3.
- 5.10 Afirmação falsa. O produto de dois números negativos é um número positivo.
- **5.11**Afirmação falsa. De facto $3 \times \frac{1}{3} = 1$ mas é porque 3 e $\frac{1}{3}$ são números inversos.

$$\frac{5}{4} = 1,25 = \frac{125}{100}; \quad 0,03 = \frac{3}{100}; \quad -\frac{9}{8} = -1,125 = \frac{1125}{1000}; \quad 12,45 = \frac{1245}{100}; \quad \frac{34}{2000} = \frac{17}{1000}$$

7.
$$\frac{\frac{9}{2} - 4}{\frac{9}{2}} - 4 - \frac{3}{3} - \frac{3}{4} - \frac{5}{3} - \frac{3}{3} - \frac{3}{3} + \frac{5}{3} - \frac{3}{3} - \frac{5}{3} - \frac{3}{3} - \frac{5}{3} - \frac{3}{3} - \frac{5}{3} - \frac{3}{3} - \frac{5}{3} - \frac$$

Reparar que
$$-\frac{9}{2} = -4.5$$
 e que $\frac{5}{3} = 1 + \frac{2}{3}$

8.

8.1
$$4 \in \mathbb{Z}$$

$$8.4 - 5 \in \mathbb{Z}$$

8.5
$$-0.5 \notin Z^{-}$$

$$4 \in \mathbb{Z}$$
 8.2 $0 \notin \mathbb{Z}^-$ 8.3 $-10 \notin \mathbb{N}$ 8.4 $-5 \in \mathbb{Z}$ $-0.5 \notin \mathbb{Z}^-$ 8.6 $1.5 \notin \mathbb{N}$ 8.7 $\left| -3 \right| = \left| +3 \right|$ 8.8 $-\left| -3 \right| < +3$

$$|-3| < +3$$

8.9
$$-10 < -3$$

$$8.10-(-1)>+(-2)$$

$$-10 < -3$$
 8.10 $-(-1) > +(-2)$ **8.11** $Z \cup \{números\ fraccionários\} = Q$

8.14
$$O\supset Z$$

$$Q\supset Z$$
 8.13 $Z^+\cup Z_0^-=Z$

9. Escreve em linguagem matemática e calcula:

9.1
$$(+9)+(-5)=+9-5=+4$$

9.2
$$(-10)$$
 – (-25) = -10 + 25 = $+15$

9.3
$$(-10)+(-30)=-10-30=-40$$

9.1
$$(+9)+(-5)=+9-5=+4$$

9.2 $(-10)-(-25)=-10+25=+15$
9.3 $(-10)+(-30)=-10-30=-40$
9.4 $(-16)-(+60)=-16-60=-76$

9.5
$$|-20| = 20$$

9.6
$$|7-3|=|4|=4$$

9.7
$$|-8|+|-2|=8+2=10$$

9.8
$$(-4)+[-(-4)]=-4+4=0$$

10. Se o número é divisível por 2 então o seu último algarismo é par (0, 2, 4, 6 ou 8). Se é divisível por 3 então a soma de todos os algarismos tem que ser um múltiplo de 3. Ora 9+9+0+1+0+1+0+2=22 logo podemos acrescentar o 2(a soma passa a dar 24 que é 8x3) ou o 8 (a soma passa a dar 30 que é 3x10).

Sendo assim o número do telemóvel do João é 990101022 ou 990101028.

11. 11.1 Número 48 .11.2 Número 501. 11.3 Número zero. 11.4 Número $\frac{1}{2}$ porque $2 \times \frac{1}{2} = \frac{2}{2} = 1$.